Note:

-An R Notebook is an R Markdown document with chunks that can be executed independently and interactively, with output visible immediately beneath the input.

-Notebook output are available as HTML, PDF, Word, or Latex.

-This Notebook as HTML is preferably open with Google Chrome.

-R-Code can be extracted as Rmd file under the button “Code” in the notebook.

-This Notebook using iterative development. It means the process starts with a simple implementation of a small set of idea requirements and iteratively enhances the evolving versions until the complete version is implemented and perfect.


#https://medium.com/coinmonks/summarization-on-descriptive-statistics-6c9f89d07458

Grundlagen

Grundgesamtheit, Stichprobe, Merkmale

Merkmals- und Skalentypen

Objektivität, Reliabilität, Validität

Mathematische Begriffen

Eine Variable:

1. Häufigkeitstabellen

2. Lageparameter

Arithmetischer Mittelwert

Median

Modus

Quantile

3. Streuungsparameter

Spannweite und Quartilsabstand

Varianz und Standardabweichung

Variationskoeffizient

4. Konzentrationsparameter

Lorenzkurve

Gini-Koeffizient

5. Darstellung von Daten

Balkendiagramme

Verteilungsfunktion

Boxplots

Histogramme

Zwei und mehr Variablen:

Zwei diskrete Variablen

Kreuztabellen / Kontingenztafeln

Bedingte Häufigkeiten

Zusammenhangsmaße

χ2-Koeffizient und Kontingenzkoeffizient K

ϕ-Koeffizient

Zwei stetige Variablen

Streudiagramme

Zusammenhangsmaße

Korrelation und Kausalität

Korrelation r nach Pearson

*Empirische Kovarianz ###Spearman-Korrelation / Rangkorrelation


Change log update

  • 30.10.2013
  • 30.01.2019


Preferences


License

MIT

LS0tDQp0aXRsZTogIkRlc3RhLURFIg0Kc3VidGl0bGU6ICJEZXNrcmlwdGl2ZSBTdGF0aXN0aWsgbWl0IFIgYXVmIERldXRzY2giDQphdXRob3I6ICJDZXZpIEhlcmRpYW4sIEIuIFNjIg0KZGF0ZTogIjE5LjAxLjIwMTkiDQpvdXRwdXQ6DQogIGh0bWxfbm90ZWJvb2s6DQogICAgY29kZV9mb2xkaW5nOiBoaWRlDQogICAgaGlnaGxpZ2h0OiBweWdtZW50cw0KICAgIHRoZW1lOiBjb3Ntbw0KICAgIHRvYzogeWVzDQogICAgdG9jX2RlcHRoOiA1DQogICAgdG9jX2Zsb2F0OiB5ZXMNCiAgaHRtbF9kb2N1bWVudDoNCiAgICBkZl9wcmludDogcGFnZWQNCiAgICB0b2M6IHllcw0KICAgIHRvY19kZXB0aDogJzUnDQogIHBkZl9kb2N1bWVudDoNCiAgICB0b2M6IHllcw0KICAgIHRvY19kZXB0aDogJzUnDQogIHdvcmRfZG9jdW1lbnQ6DQogICAgdG9jOiB5ZXMNCiAgICB0b2NfZGVwdGg6ICc1Jw0KLS0tDQoNCg0KKipOb3RlOioqDQoNCi1BbiBSIE5vdGVib29rIGlzIGFuIFIgTWFya2Rvd24gZG9jdW1lbnQgd2l0aCBjaHVua3MgdGhhdCBjYW4gYmUgZXhlY3V0ZWQgaW5kZXBlbmRlbnRseSBhbmQgaW50ZXJhY3RpdmVseSwgd2l0aCBvdXRwdXQgdmlzaWJsZSBpbW1lZGlhdGVseSBiZW5lYXRoIHRoZSBpbnB1dC4NCg0KLU5vdGVib29rIG91dHB1dCBhcmUgYXZhaWxhYmxlIGFzIEhUTUwsIFBERiwgV29yZCwgb3IgTGF0ZXguIA0KDQotVGhpcyBOb3RlYm9vayBhcyBIVE1MIGlzIHByZWZlcmFibHkgb3BlbiB3aXRoIEdvb2dsZSBDaHJvbWUuDQoNCi1SLUNvZGUgY2FuIGJlIGV4dHJhY3RlZCBhcyBSbWQgZmlsZSB1bmRlciB0aGUgYnV0dG9uICJDb2RlIiBpbiB0aGUgbm90ZWJvb2suDQoNCi1UaGlzIE5vdGVib29rIHVzaW5nIGl0ZXJhdGl2ZSBkZXZlbG9wbWVudC4gSXQgbWVhbnMgdGhlIHByb2Nlc3Mgc3RhcnRzIHdpdGggYSBzaW1wbGUgaW1wbGVtZW50YXRpb24gb2YgYSBzbWFsbCBzZXQgb2YgaWRlYSByZXF1aXJlbWVudHMgYW5kIGl0ZXJhdGl2ZWx5IGVuaGFuY2VzIHRoZSBldm9sdmluZyB2ZXJzaW9ucyB1bnRpbCB0aGUgY29tcGxldGUgdmVyc2lvbiBpcyBpbXBsZW1lbnRlZCBhbmQgcGVyZmVjdC4NCg0KPEJyPg0KDQohW10oMS5wbmcpDQoNCg0KDQoNCmBgYHtyfQ0KDQojaHR0cHM6Ly9tZWRpdW0uY29tL2NvaW5tb25rcy9zdW1tYXJpemF0aW9uLW9uLWRlc2NyaXB0aXZlLXN0YXRpc3RpY3MtNmM5Zjg5ZDA3NDU4DQoNCmBgYA0KDQojR3J1bmRsYWdlbg0KDQojI0dydW5kZ2VzYW10aGVpdCwgU3RpY2hwcm9iZSwgTWVya21hbGUNCg0KIyNNZXJrbWFscy0gdW5kIFNrYWxlbnR5cGVuDQoNCiMjT2JqZWt0aXZpdMOkdCwgUmVsaWFiaWxpdMOkdCwgVmFsaWRpdMOkdA0KDQojI01hdGhlbWF0aXNjaGUgQmVncmlmZmVuDQoNCiNFaW5lIFZhcmlhYmxlOg0KDQojMS4gSMOkdWZpZ2tlaXRzdGFiZWxsZW4NCiMyLiBMYWdlcGFyYW1ldGVyDQojI0FyaXRobWV0aXNjaGVyIE1pdHRlbHdlcnQNCiMjTWVkaWFuDQojI01vZHVzDQojI1F1YW50aWxlDQojMy4gU3RyZXV1bmdzcGFyYW1ldGVyDQojI1NwYW5ud2VpdGUgdW5kIFF1YXJ0aWxzYWJzdGFuZA0KIyNWYXJpYW56IHVuZCBTdGFuZGFyZGFid2VpY2h1bmcNCiMjVmFyaWF0aW9uc2tvZWZmaXppZW50DQojNC4gS29uemVudHJhdGlvbnNwYXJhbWV0ZXINCiMjTG9yZW56a3VydmUNCiMjR2luaS1Lb2VmZml6aWVudA0KIzUuIERhcnN0ZWxsdW5nIHZvbiBEYXRlbg0KIyNCYWxrZW5kaWFncmFtbWUNCiMjVmVydGVpbHVuZ3NmdW5rdGlvbg0KIyNCb3hwbG90cw0KIyNIaXN0b2dyYW1tZQ0KDQoNCiNad2VpIHVuZCBtZWhyIFZhcmlhYmxlbjoNCiNad2VpIGRpc2tyZXRlIFZhcmlhYmxlbg0KIyNLcmV1enRhYmVsbGVuIC8gS29udGluZ2VuenRhZmVsbg0KIyMjQmVkaW5ndGUgSMOkdWZpZ2tlaXRlbg0KIyNadXNhbW1lbmhhbmdzbWHDn2UNCiMjI8+HMi1Lb2VmZml6aWVudCB1bmQgS29udGluZ2VuemtvZWZmaXppZW50IEsNCiMjI8+VLUtvZWZmaXppZW50DQojWndlaSBzdGV0aWdlIFZhcmlhYmxlbg0KIyNTdHJldWRpYWdyYW1tZQ0KIyNadXNhbW1lbmhhbmdzbWHDn2UNCiMjI0tvcnJlbGF0aW9uIHVuZCBLYXVzYWxpdMOkdA0KIyMjS29ycmVsYXRpb24gciBuYWNoIFBlYXJzb24NCiAqRW1waXJpc2NoZSBLb3ZhcmlhbnoNCiMjI1NwZWFybWFuLUtvcnJlbGF0aW9uIC8gUmFuZ2tvcnJlbGF0aW9uDQoNCg0KPEJyPg0KDQojQ2hhbmdlIGxvZyB1cGRhdGUNCg0KKiAzMC4xMC4yMDEzDQoqIDMwLjAxLjIwMTkNCg0KPEJyPg0KDQojUHJlZmVyZW5jZXMNCg0KKiBTdGF0aXN0aWsgMSwgUHJvZi4gRHIgQmVhdGUgQmVyZ3RlcixXUyAyMDEzLCBIb2Noc2NodWxlIGbDvHIgVGVjaG5payB1bmQgV2lydHNjaGFmdCBCZXJsaW4NCiogVG91dGVuYnVyZywgSC4sIEhldW1hbm4sIEMuICgyMDA4KS4gRGVza3JpcHRpdmUgU3RhdGlzdGlrLiBFaW5lIEVpbmbDvGhydW5nIG1pdCBSIHVuZCBTUFNTLCBTcHJpbmdlciBWZXJsYWcsIEJlcmxpbi4gZS1JU0JOIDk3OC0zLTU0MC03Nzc4OC01IA0KKiBodHRwczovL3d3dy5zdGF0aXN0aWstbmFjaGhpbGZlLmRlLw0KKiBodHRwczovL3d3dy5jcmFzaGt1cnMtc3RhdGlzdGlrLmRlLw0KDQo8QnI+DQoNCiNMaWNlbnNlDQoNCltNSVRdKGh0dHBzOi8vb3BlbnNvdXJjZS5vcmcvbGljZW5zZXMvTUlUKQ==